Blame view

bootloader/u-boot_2015_04/drivers/i2c/mvtwsi.c 11.3 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
  /*
   * Driver for the TWSI (i2c) controller found on the Marvell
   * orion5x and kirkwood SoC families.
   *
   * Author: Albert Aribaud <albert.u.boot@aribaud.net>
   * Copyright (c) 2010 Albert Aribaud.
   *
   * SPDX-License-Identifier:	GPL-2.0+
   */
  
  #include <common.h>
  #include <i2c.h>
  #include <asm/errno.h>
  #include <asm/io.h>
  
  /*
   * include a file that will provide CONFIG_I2C_MVTWSI_BASE
   * and possibly other settings
   */
  
  #if defined(CONFIG_ORION5X)
  #include <asm/arch/orion5x.h>
  #elif (defined(CONFIG_KIRKWOOD) || defined(CONFIG_ARMADA_XP))
  #include <asm/arch/soc.h>
  #elif defined(CONFIG_SUNXI)
  #include <asm/arch/i2c.h>
  #else
  #error Driver mvtwsi not supported by SoC or board
  #endif
  
  /*
   * TWSI register structure
   */
  
  #ifdef CONFIG_SUNXI
  
  struct  mvtwsi_registers {
  	u32 slave_address;
  	u32 xtnd_slave_addr;
  	u32 data;
  	u32 control;
  	u32 status;
  	u32 baudrate;
  	u32 soft_reset;
  };
  
  #else
  
  struct  mvtwsi_registers {
  	u32 slave_address;
  	u32 data;
  	u32 control;
  	union {
  		u32 status;	/* when reading */
  		u32 baudrate;	/* when writing */
  	};
  	u32 xtnd_slave_addr;
  	u32 reserved[2];
  	u32 soft_reset;
  };
  
  #endif
  
  /*
   * Control register fields
   */
  
  #define	MVTWSI_CONTROL_ACK	0x00000004
  #define	MVTWSI_CONTROL_IFLG	0x00000008
  #define	MVTWSI_CONTROL_STOP	0x00000010
  #define	MVTWSI_CONTROL_START	0x00000020
  #define	MVTWSI_CONTROL_TWSIEN	0x00000040
  #define	MVTWSI_CONTROL_INTEN	0x00000080
  
  /*
   * Status register values -- only those expected in normal master
   * operation on non-10-bit-address devices; whatever status we don't
   * expect in nominal conditions (bus errors, arbitration losses,
   * missing ACKs...) we just pass back to the caller as an error
   * code.
   */
  
  #define	MVTWSI_STATUS_START		0x08
  #define	MVTWSI_STATUS_REPEATED_START	0x10
  #define	MVTWSI_STATUS_ADDR_W_ACK	0x18
  #define	MVTWSI_STATUS_DATA_W_ACK	0x28
  #define	MVTWSI_STATUS_ADDR_R_ACK	0x40
  #define	MVTWSI_STATUS_ADDR_R_NAK	0x48
  #define	MVTWSI_STATUS_DATA_R_ACK	0x50
  #define	MVTWSI_STATUS_DATA_R_NAK	0x58
  #define	MVTWSI_STATUS_IDLE		0xF8
  
  /*
   * The single instance of the controller we'll be dealing with
   */
  
  static struct  mvtwsi_registers *twsi =
  	(struct  mvtwsi_registers *) CONFIG_I2C_MVTWSI_BASE;
  
  /*
   * Returned statuses are 0 for success and nonzero otherwise.
   * Currently, cmd_i2c and cmd_eeprom do not interpret an error status.
   * Thus to ease debugging, the return status contains some debug info:
   * - bits 31..24 are error class: 1 is timeout, 2 is 'status mismatch'.
   * - bits 23..16 are the last value of the control register.
   * - bits 15..8 are the last value of the status register.
   * - bits 7..0 are the expected value of the status register.
   */
  
  #define MVTWSI_ERROR_WRONG_STATUS	0x01
  #define MVTWSI_ERROR_TIMEOUT		0x02
  
  #define MVTWSI_ERROR(ec, lc, ls, es) (((ec << 24) & 0xFF000000) | \
  	((lc << 16) & 0x00FF0000) | ((ls<<8) & 0x0000FF00) | (es & 0xFF))
  
  /*
   * Wait for IFLG to raise, or return 'timeout'; then if status is as expected,
   * return 0 (ok) or return 'wrong status'.
   */
  static int twsi_wait(int expected_status)
  {
  	int control, status;
  	int timeout = 1000;
  
  	do {
  		control = readl(&twsi->control);
  		if (control & MVTWSI_CONTROL_IFLG) {
  			status = readl(&twsi->status);
  			if (status == expected_status)
  				return 0;
  			else
  				return MVTWSI_ERROR(
  					MVTWSI_ERROR_WRONG_STATUS,
  					control, status, expected_status);
  		}
  		udelay(10); /* one clock cycle at 100 kHz */
  	} while (timeout--);
  	status = readl(&twsi->status);
  	return MVTWSI_ERROR(
  		MVTWSI_ERROR_TIMEOUT, control, status, expected_status);
  }
  
  /*
   * These flags are ORed to any write to the control register
   * They allow global setting of TWSIEN and ACK.
   * By default none are set.
   * twsi_start() sets TWSIEN (in case the controller was disabled)
   * twsi_recv() sets ACK or resets it depending on expected status.
   */
  static u8 twsi_control_flags = MVTWSI_CONTROL_TWSIEN;
  
  /*
   * Assert the START condition, either in a single I2C transaction
   * or inside back-to-back ones (repeated starts).
   */
  static int twsi_start(int expected_status)
  {
  	/* globally set TWSIEN in case it was not */
  	twsi_control_flags |= MVTWSI_CONTROL_TWSIEN;
  	/* assert START */
  	writel(twsi_control_flags | MVTWSI_CONTROL_START, &twsi->control);
  	/* wait for controller to process START */
  	return twsi_wait(expected_status);
  }
  
  /*
   * Send a byte (i2c address or data).
   */
  static int twsi_send(u8 byte, int expected_status)
  {
  	/* put byte in data register for sending */
  	writel(byte, &twsi->data);
  	/* clear any pending interrupt -- that'll cause sending */
  	writel(twsi_control_flags, &twsi->control);
  	/* wait for controller to receive byte and check ACK */
  	return twsi_wait(expected_status);
  }
  
  /*
   * Receive a byte.
   * Global mvtwsi_control_flags variable says if we should ack or nak.
   */
  static int twsi_recv(u8 *byte)
  {
  	int expected_status, status;
  
  	/* compute expected status based on ACK bit in global control flags */
  	if (twsi_control_flags & MVTWSI_CONTROL_ACK)
  		expected_status = MVTWSI_STATUS_DATA_R_ACK;
  	else
  		expected_status = MVTWSI_STATUS_DATA_R_NAK;
  	/* acknowledge *previous state* and launch receive */
  	writel(twsi_control_flags, &twsi->control);
  	/* wait for controller to receive byte and assert ACK or NAK */
  	status = twsi_wait(expected_status);
  	/* if we did receive expected byte then store it */
  	if (status == 0)
  		*byte = readl(&twsi->data);
  	/* return status */
  	return status;
  }
  
  /*
   * Assert the STOP condition.
   * This is also used to force the bus back in idle (SDA=SCL=1).
   */
  static int twsi_stop(int status)
  {
  	int control, stop_status;
  	int timeout = 1000;
  
  	/* assert STOP */
  	control = MVTWSI_CONTROL_TWSIEN | MVTWSI_CONTROL_STOP;
  	writel(control, &twsi->control);
  	/* wait for IDLE; IFLG won't rise so twsi_wait() is no use. */
  	do {
  		stop_status = readl(&twsi->status);
  		if (stop_status == MVTWSI_STATUS_IDLE)
  			break;
  		udelay(10); /* one clock cycle at 100 kHz */
  	} while (timeout--);
  	control = readl(&twsi->control);
  	if (stop_status != MVTWSI_STATUS_IDLE)
  		if (status == 0)
  			status = MVTWSI_ERROR(
  				MVTWSI_ERROR_TIMEOUT,
  				control, status, MVTWSI_STATUS_IDLE);
  	return status;
  }
  
  static unsigned int twsi_calc_freq(const int n, const int m)
  {
  #ifdef CONFIG_SUNXI
  	return CONFIG_SYS_TCLK / (10 * (m + 1) * (1 << n));
  #else
  	return CONFIG_SYS_TCLK / (10 * (m + 1) * (2 << n));
  #endif
  }
  
  /*
   * Reset controller.
   * Controller reset also resets the baud rate and slave address, so
   * they must be re-established afterwards.
   */
  static void twsi_reset(struct i2c_adapter *adap)
  {
  	/* ensure controller will be enabled by any twsi*() function */
  	twsi_control_flags = MVTWSI_CONTROL_TWSIEN;
  	/* reset controller */
  	writel(0, &twsi->soft_reset);
  	/* wait 2 ms -- this is what the Marvell LSP does */
  	udelay(20000);
  }
  
  /*
   * I2C init called by cmd_i2c when doing 'i2c reset'.
   * Sets baud to the highest possible value not exceeding requested one.
   */
  static unsigned int twsi_i2c_set_bus_speed(struct i2c_adapter *adap,
  					   unsigned int requested_speed)
  {
  	unsigned int tmp_speed, highest_speed, n, m;
  	unsigned int baud = 0x44; /* baudrate at controller reset */
  
  	/* use actual speed to collect progressively higher values */
  	highest_speed = 0;
  	/* compute m, n setting for highest speed not above requested speed */
  	for (n = 0; n < 8; n++) {
  		for (m = 0; m < 16; m++) {
  			tmp_speed = twsi_calc_freq(n, m);
  			if ((tmp_speed <= requested_speed)
  			 && (tmp_speed > highest_speed)) {
  				highest_speed = tmp_speed;
  				baud = (m << 3) | n;
  			}
  		}
  	}
  	writel(baud, &twsi->baudrate);
  	return 0;
  }
  
  static void twsi_i2c_init(struct i2c_adapter *adap, int speed, int slaveadd)
  {
  	/* reset controller */
  	twsi_reset(adap);
  	/* set speed */
  	twsi_i2c_set_bus_speed(adap, speed);
  	/* set slave address even though we don't use it */
  	writel(slaveadd, &twsi->slave_address);
  	writel(0, &twsi->xtnd_slave_addr);
  	/* assert STOP but don't care for the result */
  	(void) twsi_stop(0);
  }
  
  /*
   * Begin I2C transaction with expected start status, at given address.
   * Common to i2c_probe, i2c_read and i2c_write.
   * Expected address status will derive from direction bit (bit 0) in addr.
   */
  static int i2c_begin(int expected_start_status, u8 addr)
  {
  	int status, expected_addr_status;
  
  	/* compute expected address status from direction bit in addr */
  	if (addr & 1) /* reading */
  		expected_addr_status = MVTWSI_STATUS_ADDR_R_ACK;
  	else /* writing */
  		expected_addr_status = MVTWSI_STATUS_ADDR_W_ACK;
  	/* assert START */
  	status = twsi_start(expected_start_status);
  	/* send out the address if the start went well */
  	if (status == 0)
  		status = twsi_send(addr, expected_addr_status);
  	/* return ok or status of first failure to caller */
  	return status;
  }
  
  /*
   * I2C probe called by cmd_i2c when doing 'i2c probe'.
   * Begin read, nak data byte, end.
   */
  static int twsi_i2c_probe(struct i2c_adapter *adap, uchar chip)
  {
  	u8 dummy_byte;
  	int status;
  
  	/* begin i2c read */
  	status = i2c_begin(MVTWSI_STATUS_START, (chip << 1) | 1);
  	/* dummy read was accepted: receive byte but NAK it. */
  	if (status == 0)
  		status = twsi_recv(&dummy_byte);
  	/* Stop transaction */
  	twsi_stop(0);
  	/* return 0 or status of first failure */
  	return status;
  }
  
  /*
   * I2C read called by cmd_i2c when doing 'i2c read' and by cmd_eeprom.c
   * Begin write, send address byte(s), begin read, receive data bytes, end.
   *
   * NOTE: some EEPROMS want a stop right before the second start, while
   * some will choke if it is there. Deciding which we should do is eeprom
   * stuff, not i2c, but at the moment the APIs won't let us put it in
   * cmd_eeprom, so we have to choose here, and for the moment that'll be
   * a repeated start without a preceding stop.
   */
  static int twsi_i2c_read(struct i2c_adapter *adap, uchar chip, uint addr,
  			int alen, uchar *data, int length)
  {
  	int status;
  
  	/* begin i2c write to send the address bytes */
  	status = i2c_begin(MVTWSI_STATUS_START, (chip << 1));
  	/* send addr bytes */
  	while ((status == 0) && alen--)
  		status = twsi_send(addr >> (8*alen),
  			MVTWSI_STATUS_DATA_W_ACK);
  	/* begin i2c read to receive eeprom data bytes */
  	if (status == 0)
  		status = i2c_begin(
  			MVTWSI_STATUS_REPEATED_START, (chip << 1) | 1);
  	/* prepare ACK if at least one byte must be received */
  	if (length > 0)
  		twsi_control_flags |= MVTWSI_CONTROL_ACK;
  	/* now receive actual bytes */
  	while ((status == 0) && length--) {
  		/* reset NAK if we if no more to read now */
  		if (length == 0)
  			twsi_control_flags &= ~MVTWSI_CONTROL_ACK;
  		/* read current byte */
  		status = twsi_recv(data++);
  	}
  	/* Stop transaction */
  	status = twsi_stop(status);
  	/* return 0 or status of first failure */
  	return status;
  }
  
  /*
   * I2C write called by cmd_i2c when doing 'i2c write' and by cmd_eeprom.c
   * Begin write, send address byte(s), send data bytes, end.
   */
  static int twsi_i2c_write(struct i2c_adapter *adap, uchar chip, uint addr,
  			int alen, uchar *data, int length)
  {
  	int status;
  
  	/* begin i2c write to send the eeprom adress bytes then data bytes */
  	status = i2c_begin(MVTWSI_STATUS_START, (chip << 1));
  	/* send addr bytes */
  	while ((status == 0) && alen--)
  		status = twsi_send(addr >> (8*alen),
  			MVTWSI_STATUS_DATA_W_ACK);
  	/* send data bytes */
  	while ((status == 0) && (length-- > 0))
  		status = twsi_send(*(data++), MVTWSI_STATUS_DATA_W_ACK);
  	/* Stop transaction */
  	status = twsi_stop(status);
  	/* return 0 or status of first failure */
  	return status;
  }
  
  U_BOOT_I2C_ADAP_COMPLETE(twsi0, twsi_i2c_init, twsi_i2c_probe,
  			 twsi_i2c_read, twsi_i2c_write,
  			 twsi_i2c_set_bus_speed,
  			 CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 0)