Blame view

kernel/linux-imx6_3.14.28/lib/iomap.c 6.45 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
  /*
   * Implement the default iomap interfaces
   *
   * (C) Copyright 2004 Linus Torvalds
   */
  #include <linux/pci.h>
  #include <linux/io.h>
  
  #include <linux/export.h>
  
  /*
   * Read/write from/to an (offsettable) iomem cookie. It might be a PIO
   * access or a MMIO access, these functions don't care. The info is
   * encoded in the hardware mapping set up by the mapping functions
   * (or the cookie itself, depending on implementation and hw).
   *
   * The generic routines don't assume any hardware mappings, and just
   * encode the PIO/MMIO as part of the cookie. They coldly assume that
   * the MMIO IO mappings are not in the low address range.
   *
   * Architectures for which this is not true can't use this generic
   * implementation and should do their own copy.
   */
  
  #ifndef HAVE_ARCH_PIO_SIZE
  /*
   * We encode the physical PIO addresses (0-0xffff) into the
   * pointer by offsetting them with a constant (0x10000) and
   * assuming that all the low addresses are always PIO. That means
   * we can do some sanity checks on the low bits, and don't
   * need to just take things for granted.
   */
  #define PIO_OFFSET	0x10000UL
  #define PIO_MASK	0x0ffffUL
  #define PIO_RESERVED	0x40000UL
  #endif
  
  static void bad_io_access(unsigned long port, const char *access)
  {
  	static int count = 10;
  	if (count) {
  		count--;
  		WARN(1, KERN_ERR "Bad IO access at port %#lx (%s)
  ", port, access);
  	}
  }
  
  /*
   * Ugly macros are a way of life.
   */
  #define IO_COND(addr, is_pio, is_mmio) do {			\
  	unsigned long port = (unsigned long __force)addr;	\
  	if (port >= PIO_RESERVED) {				\
  		is_mmio;					\
  	} else if (port > PIO_OFFSET) {				\
  		port &= PIO_MASK;				\
  		is_pio;						\
  	} else							\
  		bad_io_access(port, #is_pio );			\
  } while (0)
  
  #ifndef pio_read16be
  #define pio_read16be(port) swab16(inw(port))
  #define pio_read32be(port) swab32(inl(port))
  #endif
  
  #ifndef mmio_read16be
  #define mmio_read16be(addr) be16_to_cpu(__raw_readw(addr))
  #define mmio_read32be(addr) be32_to_cpu(__raw_readl(addr))
  #endif
  
  unsigned int ioread8(void __iomem *addr)
  {
  	IO_COND(addr, return inb(port), return readb(addr));
  	return 0xff;
  }
  unsigned int ioread16(void __iomem *addr)
  {
  	IO_COND(addr, return inw(port), return readw(addr));
  	return 0xffff;
  }
  unsigned int ioread16be(void __iomem *addr)
  {
  	IO_COND(addr, return pio_read16be(port), return mmio_read16be(addr));
  	return 0xffff;
  }
  unsigned int ioread32(void __iomem *addr)
  {
  	IO_COND(addr, return inl(port), return readl(addr));
  	return 0xffffffff;
  }
  unsigned int ioread32be(void __iomem *addr)
  {
  	IO_COND(addr, return pio_read32be(port), return mmio_read32be(addr));
  	return 0xffffffff;
  }
  EXPORT_SYMBOL(ioread8);
  EXPORT_SYMBOL(ioread16);
  EXPORT_SYMBOL(ioread16be);
  EXPORT_SYMBOL(ioread32);
  EXPORT_SYMBOL(ioread32be);
  
  #ifndef pio_write16be
  #define pio_write16be(val,port) outw(swab16(val),port)
  #define pio_write32be(val,port) outl(swab32(val),port)
  #endif
  
  #ifndef mmio_write16be
  #define mmio_write16be(val,port) __raw_writew(be16_to_cpu(val),port)
  #define mmio_write32be(val,port) __raw_writel(be32_to_cpu(val),port)
  #endif
  
  void iowrite8(u8 val, void __iomem *addr)
  {
  	IO_COND(addr, outb(val,port), writeb(val, addr));
  }
  void iowrite16(u16 val, void __iomem *addr)
  {
  	IO_COND(addr, outw(val,port), writew(val, addr));
  }
  void iowrite16be(u16 val, void __iomem *addr)
  {
  	IO_COND(addr, pio_write16be(val,port), mmio_write16be(val, addr));
  }
  void iowrite32(u32 val, void __iomem *addr)
  {
  	IO_COND(addr, outl(val,port), writel(val, addr));
  }
  void iowrite32be(u32 val, void __iomem *addr)
  {
  	IO_COND(addr, pio_write32be(val,port), mmio_write32be(val, addr));
  }
  EXPORT_SYMBOL(iowrite8);
  EXPORT_SYMBOL(iowrite16);
  EXPORT_SYMBOL(iowrite16be);
  EXPORT_SYMBOL(iowrite32);
  EXPORT_SYMBOL(iowrite32be);
  
  /*
   * These are the "repeat MMIO read/write" functions.
   * Note the "__raw" accesses, since we don't want to
   * convert to CPU byte order. We write in "IO byte
   * order" (we also don't have IO barriers).
   */
  #ifndef mmio_insb
  static inline void mmio_insb(void __iomem *addr, u8 *dst, int count)
  {
  	while (--count >= 0) {
  		u8 data = __raw_readb(addr);
  		*dst = data;
  		dst++;
  	}
  }
  static inline void mmio_insw(void __iomem *addr, u16 *dst, int count)
  {
  	while (--count >= 0) {
  		u16 data = __raw_readw(addr);
  		*dst = data;
  		dst++;
  	}
  }
  static inline void mmio_insl(void __iomem *addr, u32 *dst, int count)
  {
  	while (--count >= 0) {
  		u32 data = __raw_readl(addr);
  		*dst = data;
  		dst++;
  	}
  }
  #endif
  
  #ifndef mmio_outsb
  static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count)
  {
  	while (--count >= 0) {
  		__raw_writeb(*src, addr);
  		src++;
  	}
  }
  static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count)
  {
  	while (--count >= 0) {
  		__raw_writew(*src, addr);
  		src++;
  	}
  }
  static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count)
  {
  	while (--count >= 0) {
  		__raw_writel(*src, addr);
  		src++;
  	}
  }
  #endif
  
  void ioread8_rep(void __iomem *addr, void *dst, unsigned long count)
  {
  	IO_COND(addr, insb(port,dst,count), mmio_insb(addr, dst, count));
  }
  void ioread16_rep(void __iomem *addr, void *dst, unsigned long count)
  {
  	IO_COND(addr, insw(port,dst,count), mmio_insw(addr, dst, count));
  }
  void ioread32_rep(void __iomem *addr, void *dst, unsigned long count)
  {
  	IO_COND(addr, insl(port,dst,count), mmio_insl(addr, dst, count));
  }
  EXPORT_SYMBOL(ioread8_rep);
  EXPORT_SYMBOL(ioread16_rep);
  EXPORT_SYMBOL(ioread32_rep);
  
  void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count)
  {
  	IO_COND(addr, outsb(port, src, count), mmio_outsb(addr, src, count));
  }
  void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count)
  {
  	IO_COND(addr, outsw(port, src, count), mmio_outsw(addr, src, count));
  }
  void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count)
  {
  	IO_COND(addr, outsl(port, src,count), mmio_outsl(addr, src, count));
  }
  EXPORT_SYMBOL(iowrite8_rep);
  EXPORT_SYMBOL(iowrite16_rep);
  EXPORT_SYMBOL(iowrite32_rep);
  
  #ifdef CONFIG_HAS_IOPORT
  /* Create a virtual mapping cookie for an IO port range */
  void __iomem *ioport_map(unsigned long port, unsigned int nr)
  {
  	if (port > PIO_MASK)
  		return NULL;
  	return (void __iomem *) (unsigned long) (port + PIO_OFFSET);
  }
  
  void ioport_unmap(void __iomem *addr)
  {
  	/* Nothing to do */
  }
  EXPORT_SYMBOL(ioport_map);
  EXPORT_SYMBOL(ioport_unmap);
  #endif /* CONFIG_HAS_IOPORT */
  
  #ifdef CONFIG_PCI
  /* Hide the details if this is a MMIO or PIO address space and just do what
   * you expect in the correct way. */
  void pci_iounmap(struct pci_dev *dev, void __iomem * addr)
  {
  	IO_COND(addr, /* nothing */, iounmap(addr));
  }
  EXPORT_SYMBOL(pci_iounmap);
  #endif /* CONFIG_PCI */