Blame view

kernel/linux-imx6_3.14.28/Documentation/DocBook/deviceiobook.tmpl 11 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
  <?xml version="1.0" encoding="UTF-8"?>
  <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
  	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
  
  <book id="DoingIO">
   <bookinfo>
    <title>Bus-Independent Device Accesses</title>
    
    <authorgroup>
     <author>
      <firstname>Matthew</firstname>
      <surname>Wilcox</surname>
      <affiliation>
       <address>
        <email>matthew@wil.cx</email>
       </address>
      </affiliation>
     </author>
    </authorgroup>
  
    <authorgroup>
     <author>
      <firstname>Alan</firstname>
      <surname>Cox</surname>
      <affiliation>
       <address>
        <email>alan@lxorguk.ukuu.org.uk</email>
       </address>
      </affiliation>
     </author>
    </authorgroup>
  
    <copyright>
     <year>2001</year>
     <holder>Matthew Wilcox</holder>
    </copyright>
  
    <legalnotice>
     <para>
       This documentation is free software; you can redistribute
       it and/or modify it under the terms of the GNU General Public
       License as published by the Free Software Foundation; either
       version 2 of the License, or (at your option) any later
       version.
     </para>
        
     <para>
       This program is distributed in the hope that it will be
       useful, but WITHOUT ANY WARRANTY; without even the implied
       warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
       See the GNU General Public License for more details.
     </para>
        
     <para>
       You should have received a copy of the GNU General Public
       License along with this program; if not, write to the Free
       Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
       MA 02111-1307 USA
     </para>
        
     <para>
       For more details see the file COPYING in the source
       distribution of Linux.
     </para>
    </legalnotice>
   </bookinfo>
  
  <toc></toc>
  
    <chapter id="intro">
        <title>Introduction</title>
    <para>
  	Linux provides an API which abstracts performing IO across all busses
  	and devices, allowing device drivers to be written independently of
  	bus type.
    </para>
    </chapter>
  
    <chapter id="bugs">
       <title>Known Bugs And Assumptions</title>
    <para>
  	None.	
    </para>
    </chapter>
  
    <chapter id="mmio">
      <title>Memory Mapped IO</title>
      <sect1 id="getting_access_to_the_device">
        <title>Getting Access to the Device</title>
        <para>
  	The most widely supported form of IO is memory mapped IO.
  	That is, a part of the CPU's address space is interpreted
  	not as accesses to memory, but as accesses to a device.  Some
  	architectures define devices to be at a fixed address, but most
  	have some method of discovering devices.  The PCI bus walk is a
  	good example of such a scheme.	This document does not cover how
  	to receive such an address, but assumes you are starting with one.
  	Physical addresses are of type unsigned long. 
        </para>
  
        <para>
  	This address should not be used directly.  Instead, to get an
  	address suitable for passing to the accessor functions described
  	below, you should call <function>ioremap</function>.
  	An address suitable for accessing the device will be returned to you.
        </para>
  
        <para>
  	After you've finished using the device (say, in your module's
  	exit routine), call <function>iounmap</function> in order to return
  	the address space to the kernel.  Most architectures allocate new
  	address space each time you call <function>ioremap</function>, and
  	they can run out unless you call <function>iounmap</function>.
        </para>
      </sect1>
  
      <sect1 id="accessing_the_device">
        <title>Accessing the device</title>
        <para>
  	The part of the interface most used by drivers is reading and
  	writing memory-mapped registers on the device.	Linux provides
  	interfaces to read and write 8-bit, 16-bit, 32-bit and 64-bit
  	quantities.  Due to a historical accident, these are named byte,
  	word, long and quad accesses.  Both read and write accesses are
  	supported; there is no prefetch support at this time.
        </para>
  
        <para>
  	The functions are named <function>readb</function>,
  	<function>readw</function>, <function>readl</function>,
  	<function>readq</function>, <function>readb_relaxed</function>,
  	<function>readw_relaxed</function>, <function>readl_relaxed</function>,
  	<function>readq_relaxed</function>, <function>writeb</function>,
  	<function>writew</function>, <function>writel</function> and
  	<function>writeq</function>.
        </para>
  
        <para>
  	Some devices (such as framebuffers) would like to use larger
  	transfers than 8 bytes at a time.  For these devices, the
  	<function>memcpy_toio</function>, <function>memcpy_fromio</function>
  	and <function>memset_io</function> functions are provided.
  	Do not use memset or memcpy on IO addresses; they
  	are not guaranteed to copy data in order.
        </para>
  
        <para>
  	The read and write functions are defined to be ordered. That is the
  	compiler is not permitted to reorder the I/O sequence. When the 
  	ordering can be compiler optimised, you can use <function>
  	__readb</function> and friends to indicate the relaxed ordering. Use 
  	this with care.
        </para>
  
        <para>
  	While the basic functions are defined to be synchronous with respect
  	to each other and ordered with respect to each other the busses the
  	devices sit on may themselves have asynchronicity. In particular many
  	authors are burned by the fact that PCI bus writes are posted
  	asynchronously. A driver author must issue a read from the same
  	device to ensure that writes have occurred in the specific cases the
  	author cares. This kind of property cannot be hidden from driver
  	writers in the API.  In some cases, the read used to flush the device
  	may be expected to fail (if the card is resetting, for example).  In
  	that case, the read should be done from config space, which is
  	guaranteed to soft-fail if the card doesn't respond.
        </para>
  
        <para>
  	The following is an example of flushing a write to a device when
  	the driver would like to ensure the write's effects are visible prior
  	to continuing execution.
        </para>
  
  <programlisting>
  static inline void
  qla1280_disable_intrs(struct scsi_qla_host *ha)
  {
  	struct device_reg *reg;
  
  	reg = ha->iobase;
  	/* disable risc and host interrupts */
  	WRT_REG_WORD(&amp;reg->ictrl, 0);
  	/*
  	 * The following read will ensure that the above write
  	 * has been received by the device before we return from this
  	 * function.
  	 */
  	RD_REG_WORD(&amp;reg->ictrl);
  	ha->flags.ints_enabled = 0;
  }
  </programlisting>
  
        <para>
  	In addition to write posting, on some large multiprocessing systems
  	(e.g. SGI Challenge, Origin and Altix machines) posted writes won't
  	be strongly ordered coming from different CPUs.  Thus it's important
  	to properly protect parts of your driver that do memory-mapped writes
  	with locks and use the <function>mmiowb</function> to make sure they
  	arrive in the order intended.  Issuing a regular <function>readX
  	</function> will also ensure write ordering, but should only be used
  	when the driver has to be sure that the write has actually arrived
  	at the device (not that it's simply ordered with respect to other
  	writes), since a full <function>readX</function> is a relatively
  	expensive operation.
        </para>
  
        <para>
  	Generally, one should use <function>mmiowb</function> prior to
  	releasing a spinlock that protects regions using <function>writeb
  	</function> or similar functions that aren't surrounded by <function>
  	readb</function> calls, which will ensure ordering and flushing.  The
  	following pseudocode illustrates what might occur if write ordering
  	isn't guaranteed via <function>mmiowb</function> or one of the
  	<function>readX</function> functions.
        </para>
  
  <programlisting>
  CPU A:  spin_lock_irqsave(&amp;dev_lock, flags)
  CPU A:  ...
  CPU A:  writel(newval, ring_ptr);
  CPU A:  spin_unlock_irqrestore(&amp;dev_lock, flags)
          ...
  CPU B:  spin_lock_irqsave(&amp;dev_lock, flags)
  CPU B:  writel(newval2, ring_ptr);
  CPU B:  ...
  CPU B:  spin_unlock_irqrestore(&amp;dev_lock, flags)
  </programlisting>
  
        <para>
  	In the case above, newval2 could be written to ring_ptr before
  	newval.  Fixing it is easy though:
        </para>
  
  <programlisting>
  CPU A:  spin_lock_irqsave(&amp;dev_lock, flags)
  CPU A:  ...
  CPU A:  writel(newval, ring_ptr);
  CPU A:  mmiowb(); /* ensure no other writes beat us to the device */
  CPU A:  spin_unlock_irqrestore(&amp;dev_lock, flags)
          ...
  CPU B:  spin_lock_irqsave(&amp;dev_lock, flags)
  CPU B:  writel(newval2, ring_ptr);
  CPU B:  ...
  CPU B:  mmiowb();
  CPU B:  spin_unlock_irqrestore(&amp;dev_lock, flags)
  </programlisting>
  
        <para>
  	See tg3.c for a real world example of how to use <function>mmiowb
  	</function>
        </para>
  
        <para>
  	PCI ordering rules also guarantee that PIO read responses arrive
  	after any outstanding DMA writes from that bus, since for some devices
  	the result of a <function>readb</function> call may signal to the
  	driver that a DMA transaction is complete.  In many cases, however,
  	the driver may want to indicate that the next
  	<function>readb</function> call has no relation to any previous DMA
  	writes performed by the device.  The driver can use
  	<function>readb_relaxed</function> for these cases, although only
  	some platforms will honor the relaxed semantics.  Using the relaxed
  	read functions will provide significant performance benefits on
  	platforms that support it.  The qla2xxx driver provides examples
  	of how to use <function>readX_relaxed</function>.  In many cases,
  	a majority of the driver's <function>readX</function> calls can
  	safely be converted to <function>readX_relaxed</function> calls, since
  	only a few will indicate or depend on DMA completion.
        </para>
      </sect1>
  
    </chapter>
  
    <chapter id="port_space_accesses">
      <title>Port Space Accesses</title>
      <sect1 id="port_space_explained">
        <title>Port Space Explained</title>
  
        <para>
  	Another form of IO commonly supported is Port Space.  This is a
  	range of addresses separate to the normal memory address space.
  	Access to these addresses is generally not as fast as accesses
  	to the memory mapped addresses, and it also has a potentially
  	smaller address space.
        </para>
  
        <para>
  	Unlike memory mapped IO, no preparation is required
  	to access port space.
        </para>
  
      </sect1>
      <sect1 id="accessing_port_space">
        <title>Accessing Port Space</title>
        <para>
  	Accesses to this space are provided through a set of functions
  	which allow 8-bit, 16-bit and 32-bit accesses; also
  	known as byte, word and long.  These functions are
  	<function>inb</function>, <function>inw</function>,
  	<function>inl</function>, <function>outb</function>,
  	<function>outw</function> and <function>outl</function>.
        </para>
  
        <para>
  	Some variants are provided for these functions.  Some devices
  	require that accesses to their ports are slowed down.  This
  	functionality is provided by appending a <function>_p</function>
  	to the end of the function.  There are also equivalents to memcpy.
  	The <function>ins</function> and <function>outs</function>
  	functions copy bytes, words or longs to the given port.
        </para>
      </sect1>
  
    </chapter>
  
    <chapter id="pubfunctions">
       <title>Public Functions Provided</title>
  !Iarch/x86/include/asm/io.h
  !Elib/pci_iomap.c
    </chapter>
  
  </book>