Blame view

kernel/linux-imx6_3.14.28/Documentation/cpu-freq/cpu-drivers.txt 7.73 KB
6b13f685e   김민수   BSP 최초 추가
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
       CPU frequency and voltage scaling code in the Linux(TM) kernel
  
  
  		         L i n u x    C P U F r e q
  
  			   C P U   D r i v e r s 
  
  		       - information for developers -
  
  
  		    Dominik Brodowski  <linux@brodo.de>
  
  
  
     Clock scaling allows you to change the clock speed of the CPUs on the
      fly. This is a nice method to save battery power, because the lower
              the clock speed, the less power the CPU consumes.
  
  
  Contents:
  ---------
  1.   What To Do?
  1.1  Initialization
  1.2  Per-CPU Initialization
  1.3  verify
  1.4  target/target_index or setpolicy?
  1.5  target/target_index
  1.6  setpolicy
  2.   Frequency Table Helpers
  
  
  
  1. What To Do?
  ==============
  
  So, you just got a brand-new CPU / chipset with datasheets and want to
  add cpufreq support for this CPU / chipset? Great. Here are some hints
  on what is necessary:
  
  
  1.1 Initialization
  ------------------
  
  First of all, in an __initcall level 7 (module_init()) or later
  function check whether this kernel runs on the right CPU and the right
  chipset. If so, register a struct cpufreq_driver with the CPUfreq core
  using cpufreq_register_driver()
  
  What shall this struct cpufreq_driver contain? 
  
  cpufreq_driver.name -		The name of this driver.
  
  cpufreq_driver.init -		A pointer to the per-CPU initialization 
  				function.
  
  cpufreq_driver.verify -		A pointer to a "verification" function.
  
  cpufreq_driver.setpolicy _or_ 
  cpufreq_driver.target/
  target_index		-	See below on the differences.
  
  And optionally
  
  cpufreq_driver.exit -		A pointer to a per-CPU cleanup function.
  
  cpufreq_driver.resume -		A pointer to a per-CPU resume function
  				which is called with interrupts disabled
  				and _before_ the pre-suspend frequency
  				and/or policy is restored by a call to
  				->target/target_index or ->setpolicy.
  
  cpufreq_driver.attr -		A pointer to a NULL-terminated list of
  				"struct freq_attr" which allow to
  				export values to sysfs.
  
  
  1.2 Per-CPU Initialization
  --------------------------
  
  Whenever a new CPU is registered with the device model, or after the
  cpufreq driver registers itself, the per-CPU initialization function 
  cpufreq_driver.init is called. It takes a struct cpufreq_policy
  *policy as argument. What to do now?
  
  If necessary, activate the CPUfreq support on your CPU.
  
  Then, the driver must fill in the following values:
  
  policy->cpuinfo.min_freq _and_
  policy->cpuinfo.max_freq -	the minimum and maximum frequency 
  				(in kHz) which is supported by 
  				this CPU
  policy->cpuinfo.transition_latency   the time it takes on this CPU to
  				switch between two frequencies in
  				nanoseconds (if appropriate, else
  				specify CPUFREQ_ETERNAL)
  
  policy->cur			The current operating frequency of
  				this CPU (if appropriate)
  policy->min, 
  policy->max, 
  policy->policy and, if necessary,
  policy->governor		must contain the "default policy" for
  				this CPU. A few moments later,
  				cpufreq_driver.verify and either
  				cpufreq_driver.setpolicy or
  				cpufreq_driver.target/target_index is called
  				with these values.
  
  For setting some of these values (cpuinfo.min[max]_freq, policy->min[max]), the
  frequency table helpers might be helpful. See the section 2 for more information
  on them.
  
  SMP systems normally have same clock source for a group of cpus. For these the
  .init() would be called only once for the first online cpu. Here the .init()
  routine must initialize policy->cpus with mask of all possible cpus (Online +
  Offline) that share the clock. Then the core would copy this mask onto
  policy->related_cpus and will reset policy->cpus to carry only online cpus.
  
  
  1.3 verify
  ------------
  
  When the user decides a new policy (consisting of
  "policy,governor,min,max") shall be set, this policy must be validated
  so that incompatible values can be corrected. For verifying these
  values, a frequency table helper and/or the
  cpufreq_verify_within_limits(struct cpufreq_policy *policy, unsigned
  int min_freq, unsigned int max_freq) function might be helpful. See
  section 2 for details on frequency table helpers.
  
  You need to make sure that at least one valid frequency (or operating
  range) is within policy->min and policy->max. If necessary, increase
  policy->max first, and only if this is no solution, decrease policy->min.
  
  
  1.4 target/target_index or setpolicy?
  ----------------------------
  
  Most cpufreq drivers or even most cpu frequency scaling algorithms 
  only allow the CPU to be set to one frequency. For these, you use the
  ->target/target_index call.
  
  Some cpufreq-capable processors switch the frequency between certain
  limits on their own. These shall use the ->setpolicy call
  
  
  1.4. target/target_index
  -------------
  
  The target_index call has two arguments: struct cpufreq_policy *policy,
  and unsigned int index (into the exposed frequency table).
  
  The CPUfreq driver must set the new frequency when called here. The
  actual frequency must be determined by freq_table[index].frequency.
  
  Deprecated:
  ----------
  The target call has three arguments: struct cpufreq_policy *policy,
  unsigned int target_frequency, unsigned int relation.
  
  The CPUfreq driver must set the new frequency when called here. The
  actual frequency must be determined using the following rules:
  
  - keep close to "target_freq"
  - policy->min <= new_freq <= policy->max (THIS MUST BE VALID!!!)
  - if relation==CPUFREQ_REL_L, try to select a new_freq higher than or equal
    target_freq. ("L for lowest, but no lower than")
  - if relation==CPUFREQ_REL_H, try to select a new_freq lower than or equal
    target_freq. ("H for highest, but no higher than")
  
  Here again the frequency table helper might assist you - see section 2
  for details.
  
  
  1.5 setpolicy
  ---------------
  
  The setpolicy call only takes a struct cpufreq_policy *policy as
  argument. You need to set the lower limit of the in-processor or
  in-chipset dynamic frequency switching to policy->min, the upper limit
  to policy->max, and -if supported- select a performance-oriented
  setting when policy->policy is CPUFREQ_POLICY_PERFORMANCE, and a
  powersaving-oriented setting when CPUFREQ_POLICY_POWERSAVE. Also check
  the reference implementation in drivers/cpufreq/longrun.c
  
  
  
  2. Frequency Table Helpers
  ==========================
  
  As most cpufreq processors only allow for being set to a few specific
  frequencies, a "frequency table" with some functions might assist in
  some work of the processor driver. Such a "frequency table" consists
  of an array of struct cpufreq_frequency_table entries, with any value in
  "driver_data" you want to use, and the corresponding frequency in
  "frequency". At the end of the table, you need to add a
  cpufreq_frequency_table entry with frequency set to CPUFREQ_TABLE_END. And
  if you want to skip one entry in the table, set the frequency to 
  CPUFREQ_ENTRY_INVALID. The entries don't need to be in ascending
  order.
  
  By calling cpufreq_frequency_table_cpuinfo(struct cpufreq_policy *policy,
  					struct cpufreq_frequency_table *table);
  the cpuinfo.min_freq and cpuinfo.max_freq values are detected, and
  policy->min and policy->max are set to the same values. This is
  helpful for the per-CPU initialization stage.
  
  int cpufreq_frequency_table_verify(struct cpufreq_policy *policy,
                                     struct cpufreq_frequency_table *table);
  assures that at least one valid frequency is within policy->min and
  policy->max, and all other criteria are met. This is helpful for the
  ->verify call.
  
  int cpufreq_frequency_table_target(struct cpufreq_policy *policy,
                                     struct cpufreq_frequency_table *table,
                                     unsigned int target_freq,
                                     unsigned int relation,
                                     unsigned int *index);
  
  is the corresponding frequency table helper for the ->target
  stage. Just pass the values to this function, and the unsigned int
  index returns the number of the frequency table entry which contains
  the frequency the CPU shall be set to.